Lecture 9: Labour economics

Spring 2019

Lars Calmfors

Literature: Chapter 10 Cahuc-Carcillo-Zylberberg: 633-638

Bennmarker-Calmfors-Seim

Foged and Peri

Topics

- Technological progress and unemployment
- Skill-biased technological progress and wage inequality
- Skill-biased technological progress and wage rigidity
- US versus Europe
- Low-skilled wages and immigration
- Wages, working time and the Earned Income Tax Credit in Sweden

Technological progress

- Labour productivity growth
- Capitalisation effect increases the profit due to job creation.
- The individual's productivity y grows at the rate g.
- Assume a <u>balanced growth path</u> where productivity, the real wage and profits all increase at the rate of g.

 $\pi_{_{\scriptscriptstyle \varrho}}=$ profit from a filled vacancy (discounted value)

 $\pi_{_{V}} = \text{profit from an unfilled vacancy (discounted value)}$

$$\pi_{e} = \frac{1}{1 + rdt} [(y - w)dt + qdt(1 + gdt)\pi_{v} + (1 - qdt)]$$

$$(1 + gdt)\pi_{e}]$$
(3)

q =rate of job destruction

Equation (3) can be rewritten:

$$(r - g)\pi_{e} = (y - w) + q(1 + gdt)(\pi_{v} - \pi_{e})$$

$$dt \to 0 \Rightarrow$$

$$(r - g)\pi_{e} = (y - w) + q(\pi_{v} - \pi_{e})$$

$$r\pi_{e} = (y - w) + q(\pi_{v} - \pi_{e}) + g\pi_{e}$$
(4)

- If $\pi_{_e}$ is "invested" in the labour market it earns a return made up of the instantaneous profit (y-w) and an expected "capital gain" $q(\pi_{_V}-\pi_{_e})$.
- In addition the value of the asset has risen by $g\pi_{_{e}}$.
- A financial investment yields $r\pi_{_{
 m e}}$.
- $(r-g)\pi_{_e}$ is the return from a financial investment less the "opportunity cost" $g\pi_{_e}$ in an environment characterized by growth g.
- $(r-g)\pi_{_{e}}$ is the <u>effective</u> rate of return on an investment.
- Growth is accompanied by a capitalisation effect equivalent to a reduction in the interest rate.
- The cost of a vacancy is assumed to be indexed to productivity, i.e. it is hy.

The return from an unfilled vacancy

$$(r-g)\pi_{v} = -hy + m(\theta)(\pi_{s} - \pi_{v})$$
 (4a)

The free-entry condition $\pi_{_{V}}$ = 0 together with (4) and (4a) give:

$$\frac{y-w}{r-g+q} = \frac{hy}{m(\theta)} \tag{5}$$

The expected present value from a filled job, π_e , is equal to the average cost of a vacancy, $hy/m(\theta)$.

- (5) represents labour demand.
- $g \uparrow \Rightarrow LHS \uparrow \Rightarrow \pi_{e} \uparrow$
- Hence, the *RHS*, the cost of an unfilled vacancy, must also go up. This occurs if the average duration of a vacancy $1/m(\theta)$ increases, which happens when labour market tightness increases.
- Hence, $g \uparrow \Rightarrow \theta \uparrow$, i.e. an upward shift of the labour demand schedule.

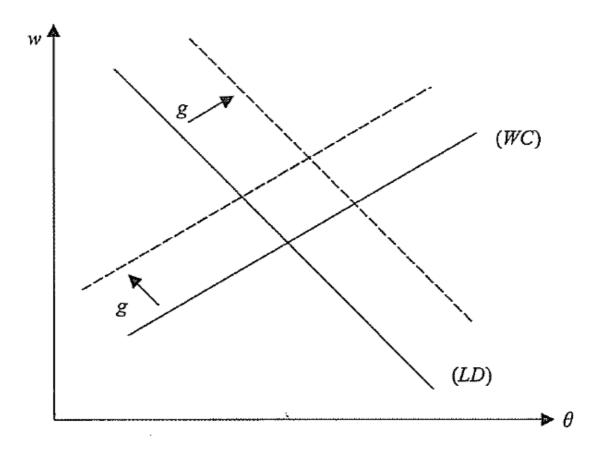


FIGURE 10.1
The effect of an increase in productivity.

Wage setting

 $V_{_{_{\mathcal{S}}}}$ = the present value of an employed worker

 $V_{_{_{^{\prime\prime}}}}$ = the present value of an unemployed worker

$$(r-g)V_{g} = w + q(V_{g} - V_{g})$$
 (6)

We assume that the income of an unemployed worker is indexed to productivity, such that it is zy.

Then:

$$(r-g)V_{\mu} = zy + \theta m(\theta)(V_{e} - V_{\mu})$$
 (7)

Apply the same wage bargaining model as in chapter 9, but change z to zy and r to (r-g).

Equation (20) in chapter 9 can then be rewritten:

$$w = y[z + (1-z)\Gamma(\theta)]$$

$$\Gamma(\theta) = \frac{\gamma \left[r - g + q + \theta m(\theta) \right]}{r - g + q + \gamma \theta m(\theta)}$$
(8)

- The "strength of the employee in bargaining", $\Gamma(\theta)$, increases with g .
- $g \uparrow$ reduces the effective interest rate.
- The "capital loss" from job destruction is increased.
- Hence, relatively better to be unemployed.
- WC curve is shifted upwards.

From Figure 10.1

A rise in productivity growth:

- (i) raises the wage
- (ii) has an ambiguous effect on θ .

But (5) and (8) together give:

$$\frac{(1-\gamma)(1-z)}{r-g+q+\gamma\theta m(\theta)} = \frac{h}{m(\theta)}$$
(9)

Differentiation of (9) shows that rise in g raises θ .

$$\frac{d\theta}{dg} = \frac{h}{h\gamma \left[\underline{m(\theta) + \theta m'(\theta)}\right] - (1-\gamma)(1-z)m'(\theta)} > 0$$

The Anglo-Saxon vs the European model

- Biased technological progress
- Two labour markets: skilled and unskilled labour
- Three goods
 - final good
 - two intermediate goods (one produced with skilled labour; one produced with unskilled labour)
- Each employee produces one intermediate good per unit of time.

Production of the final good

• The market for the final good is perfectly competitive.

$$\max_{L_h, L_l} F(A_h, A_l, L_l) - p_h L_h - p_L L_L$$

$$p_i = A_i F_i(A_h L_h, A_l L_l) \qquad i = h, l$$

$$\frac{p_h}{p_l} = \frac{A_h F_h(A_h L_h, A_l L_l)}{A_l F_l(A_h L_h, A_l L_l)}$$

Stationary state

$$r\pi_{i} = p_{i} - w_{i} + q_{i}(\pi_{v_{i}} - \pi_{i})$$
 (39)

 $h_i = \cos t \text{ of a vacancy}$

$$\theta_{_{i}}=V_{_{i}}$$
 / $U_{_{i}}=$ labour market tightness

 $m(\theta_{_i}) = M_{_i} (V_{_i}/U_{_i})/V_{_i} =$ the rate at which vacant jobs of type i are filled

$$r\pi_{v_i} = -h_i + m_i(\theta_i)(\pi_i - \pi_{v_i})$$
 (40)

From free-entry condition π_{vi} = 0, (39) and (40) we have:

$$\frac{h_i}{m(\theta_i)} = \frac{p_i - w_i}{r + q_i} \tag{41}$$

Wage negotiations

 $z_i =$ income of an unemployed person

 V_{ei} = discounted utility of an employed *i* worker

 $V_{_{ui}}$ = discounted utility of an unemployed i worker

$$rV_{ei} = w_i + q_i(V_{ui} - V_{ei})$$

$$rV_{ui} = z_{i} + \theta_{i} m(\theta_{i})(V_{ei} - V_{ui})$$

From eq. (20) in chapter 9

$$w_{i} = z_{i} + (p_{i} - z_{i})\Gamma_{i}(\theta_{i})$$

$$(42)$$

$$\Gamma_{i}(\theta_{i}) = \frac{\gamma_{i} \left[r + q_{i} + \theta_{i} m(\theta_{i}) \right]}{r + q_{i} + \gamma_{i} \theta_{i} m(\theta_{i})} \qquad i = h, l$$

$$z_i = b_i w_i$$

$$h_{i} = hp_{i}$$

$$W_i = b_i W_i + (p_i - b_i W_i) \Gamma_i(\theta_i)$$

$$w_{i} = p_{i}\Phi(\theta_{i}) \qquad \Phi(\theta_{i}) = \frac{\Gamma_{i}(\theta_{i})}{1 - b_{i} + b_{i}\Gamma_{i}(\theta_{i})} \quad i = 1, 2 \quad (42a)$$

(41) and (42a) give:

$$\frac{h}{m_{i}(\theta_{i})} = \frac{1 - \Phi_{i}(\theta_{i})}{r + q_{i}}$$

- Labour market tightness is independent of the prices of the intermediate goods and thus of technological progress.
- Hence, unemployment from the Beveridge curve does not depend on technological progress (bias).
- But the relative wage w_l/w_h does depend on technological bias (prices).
- This is an Anglo-Saxon labour market.

A European labour market

- Unskilled workers are paid a minimum wage.
- <u>Assumption</u>: The minimum wage is indexed to the wage of skilled workers.

$$w_{l} = \mu w_{h} = \mu p_{h} \Phi_{h}(\theta_{h}) \qquad 0 \leq \mu \leq 1$$

$$\frac{h_{l}}{m(\theta_{l})} = \frac{p_{l} - w_{l}}{r + q_{l}} = \frac{p_{l} - \mu p_{h} \Phi_{h}(\theta_{h})}{r + q_{l}}$$

$$\frac{hp_{l}}{m(\theta_{l})} = \frac{p_{l} - \mu p_{h} \Phi_{h}(\theta_{h})}{r + q_{l}}$$

$$\frac{h}{m(\theta_l)} = \frac{1 - \mu \frac{p_h}{p_l} \Phi_h(\theta_h)}{r + q_l}$$

- Obviously $\theta_{_{l}}$ is affected by a change in $p_{_{h}}/p_{_{l}}$ due to technological bias.
- $\theta_{_h}$ is determined as in the Anglo-Saxon model and is not affected by technological bias.
- It follows that relative unemployment is affected by technological bias.

CES production function

$$F(A_{h}L_{h}, A_{l}F_{l}) = \left[\left(A_{h}L_{h}\right)^{(\sigma-1)/\sigma} + \left(A_{l}L_{l}\right)^{(\sigma-1)/\sigma}\right]^{\sigma/(\sigma-1)}$$

$$\frac{p_h}{p_l} = \left(\frac{A_h}{A_l}\right)^{(\sigma-1)/\sigma} \left(\frac{L_h}{L}\right)^{-1/\sigma} \tag{46}$$

Anglo-Saxon model

$$\frac{w_h}{w_l} = \left(\frac{A_h}{A_l}\right)^{(\sigma-1)/\sigma} \left[\frac{N_h(1-u_h)}{N_l(1-u_l)}\right]^{-1/\sigma} \qquad \frac{\Phi_h(\theta_h)}{\Phi_l(\theta_l)}$$

European labour market

(46) together with $L_{i} = N_{i}(1-u_{i})$ and

$$\frac{h_{l}}{m_{l}(\theta_{l})} = \frac{p_{l} - w_{l}}{r + q_{l}}$$

gives:

$$\frac{h(r+q_l)}{m_l(\theta_l)} = 1 - \mu \left(\frac{A_h}{A_l}\right)^{(\sigma-1)/\sigma} \left[\frac{N_h(1-u_h)}{N_l(1-u_l)}\right]^{-1/\sigma} \Phi_h(\theta_h)$$

- $\theta_{_h}$ and $u_{_h}$ are independent of technological bias.
- It can be derived that $\mathbf{v}_{_{l}} = \mathbf{v}_{_{l}} \; (\; u_{_{l}})$
- Rise of $x = A_h / A_l$ with $\sigma > 1$ shifts *LD* curve downwards in Figure 10.11.
- $u_{l} \uparrow \text{ and } \frac{u_{l}}{u_{h}} \uparrow$.

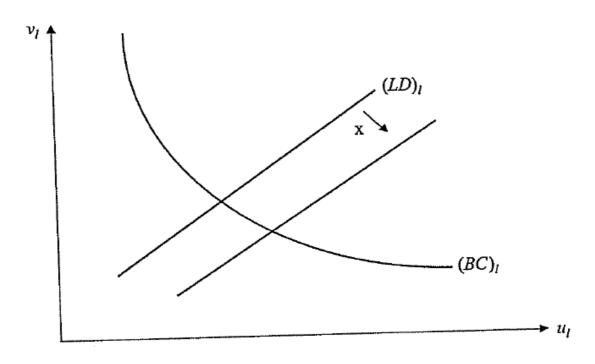


FIGURE 10.11
The unskilled labor market equilibrium.

Wage effects of immigration

- Current Swedish debate on lower minimum wages to help labour market integration of low-skilled immigrants
- Fear that this will cause lower wages for low-skilled natives as well
- No available research on this issue
- But research in other countries on the effects of low-skilled immigration on wages of low-skilled natives
- Some studies have found **positive** or **no** effects
- Methodological problems with these studies
 - causality: immigration can be driven by demand (not supply)
 - not panel data on individuals: instead cross-sectional data on regions (encompassing both incumbents and those who move in but not those who move out)

Foged-Peri study of Denmark

- Supply-driven allocation of refugee immigrants to Denmark 1986-1998
 - allocation according to housing situation (not labour-demand situation)
 - natural experiment (quasi-experiment)
- Results
 - Less educated native workers are pushed to change occupation (moves to non-manual occupations especially when changes of establishment)
 - Positive or null wage and employment effects on native workers
 - Cohort-based and area-based analyses give similar results

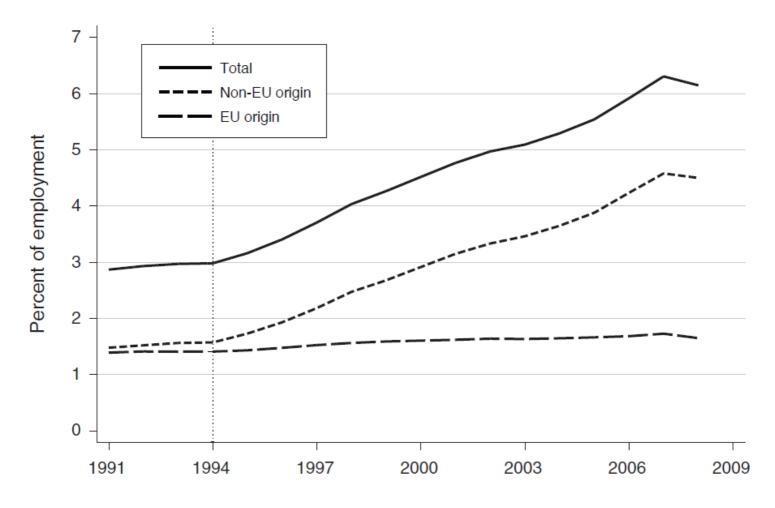


Figure 1. Foreign Born Share in Denmark, 1991–2008

TABLE 2—SKILL LEVELS

	Refugee	Natives
Panel A. Education		
Primary	0.292	0.265
Secondary	0.104	0.059
Vocational	0.293	0.403
Higher	0.214	0.265
Unknown	0.097	0.008
Panel B. Occupation		
Most complex	0.000	0.002
Least complex	0.134	0.041
Best paid	0.003	0.030
Least paid	0.026	0.030

Notes: Observations with unknown education in the register likely have foreign education. Occupation groups are the 2-digit ISCO classifications.

Table 3—Skill Content of Occupations and Change in Refugee Immigrants Share, 1994–2008

	Difference in		Skill content of	occupation	
	refugee share	Cognitive	Communication	Manual	Complexity
Panel A. Lowest inflow					
Managers of small enterprises	-0.003	0.666	0.677	0.432	1.136
Legislators and senior officials	0.001	0.897	0.989	0.303	1.828
Skilled agricultural and fishery workers	0.001	0.362	0.248	0.736	-0.328
Corporate managers	0.002	0.796	0.796	0.367	1.488
Armed forces	0.002	0.441	0.390	0.633	0.225
Panel B. Highest inflow					
Laborers in mining, construction, manufacturing, and transport	0.022	0.215	0.156	0.769	-0.783
Drivers and mobile plant operators	0.023	0.352	0.265	0.810	-0.322
Other elementary occupations	0.027	0.260	0.205	0.742	-0.633
Machine operators and assemblers	0.036	0.276	0.146	0.790	-0.655
Sales and services elementary occupations	0.051	0.126	0.103	0.695	-1.234

Notes: Complexity index = ln((Communication + Cognitive)/Manual). The skill content of each occupational grouping (2-digit ISCO) is the population weighted average of the underlying occupations (4-digit ISCO).

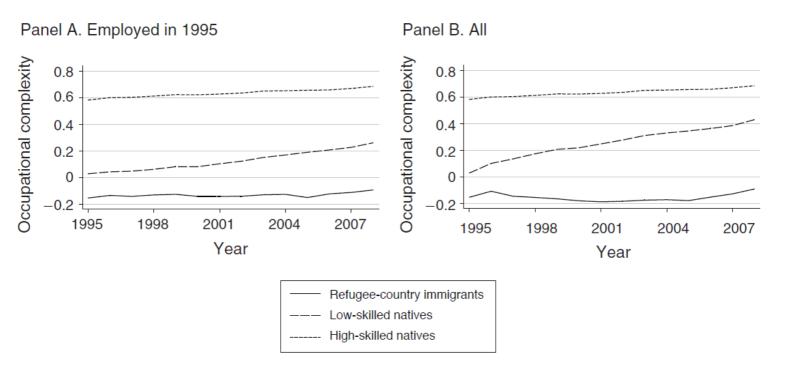


FIGURE 3. MEAN COMPLEXITY OF TASKS OVER TIME FOR GROUPS OF WORKERS

Notes: Each year the figure shows (for three groups) the mean complexity of tasks performed by either those employed in 1995 (panel A) or all, i.e., including new entrants to Danish employment (panel B).

$$y_{ijmt}^{NAT} = x_{it}'\alpha + \beta S_{mt} + \phi_{t,IND} + \phi_{t,REG} + \gamma_{i,u} + \varepsilon_{ijmt},$$

where

 y_{ijmt}^{NAT} = complexity, wages or employment

 x_{it} = vector of time-varying individual characteristics

 S_{mt} = refugee immigrant share of employment

 $\phi_{t,IND}$ = industry-by-year effects

 $\phi_{t,REG}$ = region-by-year effects

 $\gamma_{i,u}$ = various fixed effects

 $\varepsilon_{ijmt} = \text{error term}$

$$y_{imt}^{NAT} = x_{it}'\alpha + \sum_{s=-3}^{-1} \gamma_s M_m D(year = s) + \sum_{s=1}^{14} \gamma_s M_m D(year = s) + \phi_{t,IND} + \phi_{t,REG} + \phi_{t,EDUC} + \phi_{t,OCC} + \phi_m + \varepsilon_{it},$$

where

 y_{imt}^{NAT} = complexity, wages or employment

 x_{it} = vector of time-varying individual characteristics

 M_m = treatment dummy (upper or lower quartile of refugee inflows)

 $\phi_{t,IND}$ = industry-by-year effects

 $\phi_{t,REG}$ = region-by-year effects

 $\phi_{t,EDUC}$ = education-by-year effects

 $\phi_{t,OCC}$ = occupation-by-year effects

 ϕ_m = fixed municipality effects

Instrumentation of Refugee Immigration

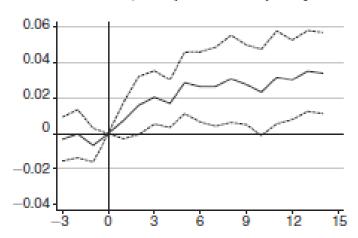
 F_{ct} = total refugee immigration from country c in year t

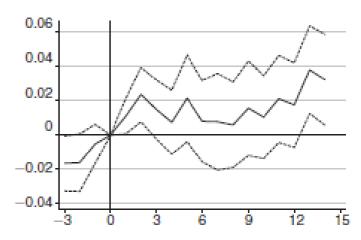
 S_{cm} = share of immigrants from country c who settled in municipality m 1986-1998

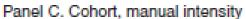
 \hat{F}_{cmt} for $t > 1994 = S_{cm} \times F_{ct} = \text{imputed working-age population}$ from refugee-sending country c in year t

$$\hat{S}_{mt} = \frac{\sum_{c} \hat{F}_{cmt}}{P_{m1998}}$$

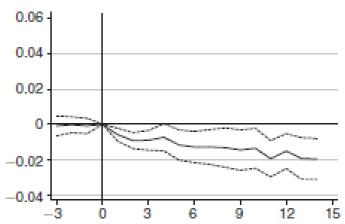
 $P_{m_{1998}}$ = total working-age population in municipality m in 1998

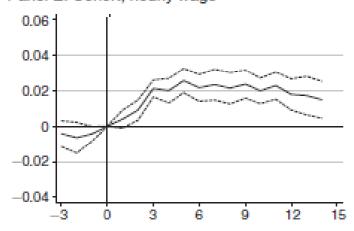

TABLE 6—FIXED EFFECT REGRESSIONS, LOW SKILLED


	Worker-est	ablishment	Worker-m	unicipality	Wor	ker
	FE (1)	FE-IV (2)	FE (3)	FE-IV (4)	FE (5)	FE-IV (6)
Occupational complexity	0.255	0.259	1.310*	3.170*	0.602*	1.340**
	(0.326)	(0.580)	(0.612)	(1.534)	(0.275)	(0.478)
Manual intensity	-0.122 (0.143)	-0.289 (0.337)	$-0.717** \\ (0.224)$	-1.947** (0.680)	$-0.388** \\ (0.131)$	-0.851*** (0.230)
Communication intensity	-0.144 (0.315)	-0.514 (0.526)	0.200 (0.512)	0.559 (1.001)	0.156 (0.210)	0.668* (0.333)
Cognitive intensity	0.327	0.144	0.821*	1.417	0.213	0.238
	(0.198)	(0.488)	(0.407)	(0.855)	(0.148)	(0.233)
Occupational mobility	0.320	1.004	0.502	1.933*	0.931***	1.781***
	(0.295)	(0.785)	(0.412)	(0.983)	(0.214)	(0.457)
Hourly wage	0.620*	1.601**	0.169	0.983	0.787**	1.802**
	(0.265)	(0.507)	(0.351)	(0.601)	(0.300)	(0.642)
Fraction of year worked	0.151	0.554*	0.259*	0.794**	0.408***	0.735***
	(0.129)	(0.262)	(0.106)	(0.287)	(0.066)	(0.101)
Observations First-stage <i>F</i> -statistic First-stage coefficient	1,564,737	1,564,737 53.53 0.551*** (0.075)	1,816,727	1,816,727 58.01 0.603*** (0.079)	1,864,027	1,864,027 468.87 0.476*** (0.022)

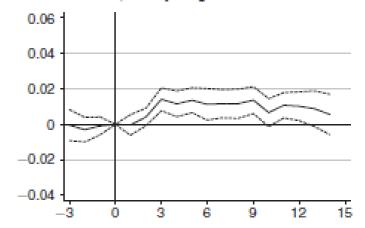

TABLE 7—FIXED EFFECT REGRESSIONS, HIGH SKILLED

	Worker-esta	ablishment	Worker-m	unicipality	Wor	rker
	FE (1)	FE-IV (2)	FE (3)	FE-IV (4)	FE (5)	FE-IV (6)
Occupational complexity	-0.038 (0.256)	0.245 (0.457)	0.406 (0.256)	1.149** (0.410)	0.288* (0.139)	0.477* (0.220)
Manual intensity	-0.132 (0.112)	-0.448 (0.243)	$-0.308* \\ (0.120)$	-0.777** (0.246)	-0.237*** (0.070)	-0.387*** (0.096)
Communication intensity	-0.346 (0.224)	-0.239 (0.361)	0.005 (0.246)	0.484 (0.352)	0.050 (0.122)	0.218 (0.176)
Cognitive intensity	-0.084 (0.184)	-0.447 (0.522)	0.101 (0.199)	-0.009 (0.396)	0.021 (0.111)	-0.096 (0.197)
Occupational mobility	0.106 (0.235)	1.301* (0.546)	0.395 (0.272)	1.944*** (0.569)	0.209 (0.160)	0.378 (0.260)
Hourly wage	0.512*** (0.148)	2.068*** (0.452)	0.522* (0.203)	2.316*** (0.584)	-0.301 (0.381)	-0.034 (0.483)
Fraction of year worked	-0.083 (0.080)	0.178 (0.176)	-0.048 (0.073)	0.120 (0.166)	0.096* (0.040)	0.223*** (0.060)
Observations First-stage F-statistic First-stage coefficient	2,860,183	2,860,183 63.28 0.563*** (0.071)	3,125,934	3,125,934 68.02 0.607*** (0.074)	3,160,757	3,160,757 294.85 0.495*** (0.029)

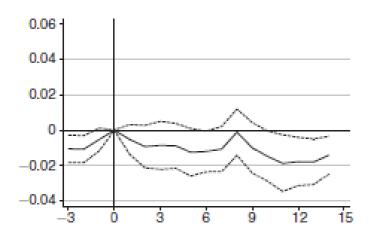



0.06 -0.04 0.02 0 -0.02-0.04ġ ġ 6 12

Panel D. Area, manual intensity



Panel E. Cohort, hourly wage


0

Panel F. Area, hourly wage

Panel G. Cohort, fraction of year worked

Panel H. Area, fraction of year worked

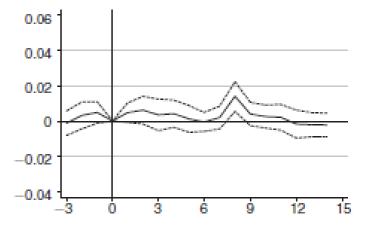


FIGURE 4. TREATMENT-CONTROL DIFFERENCES IN OUTCOMES, LOW SKILLED

Benmarker-Calmfors-Seim model

29

$$rV_E^i = \omega_E^i + q(V_U - V_E^i) \tag{1}$$

$$rV_U = b + s(\theta)(V_E - V_U), \tag{2}$$

$$s'(\theta) > 0$$
.

$$\omega_E^i = w^i - T_E(w^i)$$

$$r\Pi_E^i = y - \omega_F^i + q(\Pi_V^i - \Pi_E^i)$$
(3)

$$r\Pi_V^i = -h + m(\theta) \left(\Pi_E^i - \Pi_V^i\right),\tag{4}$$

$$m'(\theta) < 0$$

$$\omega_F^i = (1+\tau)w^i$$

$$\max_{lnw^{i}} \Lambda = \lambda ln \left(V_{E}^{i} - V_{U} \right) + (1 - \lambda) ln \left(\Pi_{E}^{i} - \Pi_{V}^{i} \right)$$

where (1) implies

$$V_E^i - V_U = \frac{\omega_E^i - rV_U}{r + q}. ag{5}$$

Since free entry of firms ensures that $\Pi_{V}^{i} = 0$, (3) gives:

$$\Pi_E^i - \Pi_V^i = \frac{y - \omega_F^i}{r + q}.$$
 (6)

Taking account of (5) and (6) and solving the optimization problem gives the first-order condition:

$$\frac{\partial \ln \Lambda}{\partial \ln w^{i}} = \lambda \frac{\mu^{i} \omega_{E}^{i}}{(\omega_{F}^{i} - rV_{U})} - (1 - \lambda) \frac{\omega_{F}^{i}}{y - \omega_{F}^{i}} = 0, \tag{7}$$

Coefficient av residual income progression:

$$\mu^{i} \equiv \frac{\partial ln\omega_{E}^{i}}{\partial lnw^{i}} = \frac{1 - T_{E}'(w^{i})}{1 - T_{E}/w^{i}},$$

Using (1) and (2) to solve for rV_U we obtain:

$$rV_{U} = \left[\frac{r+q}{r+q+s(\theta)}\right]b + \left[\frac{s(\theta)}{r+q+s(\theta)}\right]\omega_{E}$$

$$\lambda \frac{\mu^{i}}{\left(1 - \left(\frac{r+q}{r+q+s(\theta)}\right)\rho^{i} - \left(\frac{s(\theta)}{r+q+s(\theta)}\right)\omega_{E}/\omega_{E}^{i}\right)} = (1-\lambda)\frac{\omega_{F}^{i}}{y - \omega_{F}^{i}},$$
(8)

where $ho^i=b/\omega_E^i$ is the after-tax replacement rate of individual i.

Because $\omega_E^i = w^i - T_E(w^i)$, $\omega_E = w - T_E(w)$ and $\omega_F^i = (1 + \tau)w^i$, the condition (8) implicitly defines a real wage equation for an individual worker:

$$w^{i} = w^{i}(\rho^{i}, \mu^{i}, \tau, \theta, y, w; r, q, \lambda). \tag{9}$$

Differentiating (8), we find that:

$$\frac{\partial w^i}{\partial \rho^i} = \frac{(1-\lambda)(r+q)(w^i/\mu^i)}{\phi} > 0,$$

$$\frac{\partial w^i}{\partial \mu^i} = \frac{\lambda (r + q + s(\theta)) (y/\omega_F^i - 1) (w^i/\mu^i)}{\phi} > 0,$$

$$\frac{\partial w^i}{\partial \tau} = -\frac{\lambda (r+q+s(\theta))(y/(1+\tau)^2)}{\phi} < 0,$$

$$\frac{\partial w^i}{\partial \theta} = \frac{\left(\omega_E/\omega_E^i - \rho^i\right)(1-\lambda)s'(\theta)(r+q)/(r+q+s(\theta))\left(w^i/\mu^i\right)}{\phi} \leq 0,$$

$$\frac{\partial w^i}{\partial y} = \frac{\lambda (r + q + s(\theta))/(1 + \tau)}{\phi} > 0,$$

$$\frac{\partial w^i}{\partial w} = \frac{(1-\lambda)s(\theta)(1-T_E'(w))(\mu w^i \omega_E/\mu^i w \omega_E^i)}{\phi} > 0,$$

where

$$\phi = (1 - \lambda)s(\theta)(\omega_E/\omega_E^i) + \lambda(r + q + s(\theta))(y/\omega_F^i) > 0.$$

Imposing $w^i = w$ on (9) enables us to solve

$$w = \frac{1}{(1+\tau)} \frac{\lambda \mu(r+q+s(\theta))y}{[(1-\lambda)(1-\rho)(r+q) + \lambda \mu(r+q+s(\theta))]}.$$
 (10)

Equation (10) now defines an aggregate equilibrium before-tax real wage

$$w = w(\rho, \mu, \tau, \theta, y; r, q, \lambda). \tag{11}$$

Benchmark regression equation

$$\Delta lnw_{it} = \beta_0 + \beta_1 \Delta lnp_t + \beta_2 \Delta \rho_{it} + \beta_3 \Delta \mu_{it} + \beta_4 \Delta \tau_{it} + \beta_5 \Delta \theta_{it} + \sum_j \beta_{5+j} x_{ijt} + \epsilon_{it},$$

Table 1. Descriptive statistics, 2005-2009

	Year	2005	2006	2007	2008	2009
Monthly wage	Mean	24 205	25 115	25 795	27 115	27 991
	St Dev	11 591	12 171	12 229	12 527	12 590
	Min	10 000	12 000	12 000	12 000	12 000
	Max	1 043 707	1 232 252	960 882	736 626	668 145
Wage growth	Mean	.037	.044	.041	.058	.037
	St Dev	.117	.120	.125	.124	.119
	Min	-2.141	-2.086	-1.940	-2.004	-2.196
	Max	2.340	2.477	1.754	2.014	2.310
Net replacement rate	Mean	.710	.697	.630	.603	.582
The traphase mentions and	St Dev	.129	.133	.131	.132	.133
	Min	.032	.023	.019	.024	.031
	Max	.860	.859	.795	.795	.795
	Wax	.555	.555		00	., 55
Net replacement rate growth	Mean		016	072	032	023
	St Dev		.051	.056	.056	.056
	Min		571	654	567	575
	Max		.614	.434	.505	.579
Progressivity variable	Mean	.871	.868	.858	.851	.864
riogradatily variable	St Dev	.090	.088	.097	.100	.092
	Min	.672	.666	.647	.641	.637
	Max	1	1	1	1	1
Change in progressivity variable	Mean		004	012	009	.012
	St Dev		.067	.068	.073	.080
	Min		314	338	354	350
	Max		.319	.326	.339	.346
Local unemployment	Mean	.059	.053	.039	.037	.059
• ,	St Dev	.016	.015	.012	.012	.018
	Min	.023	.021	.013	.009	.018
	Max	.141	.115	.089	.094	.138
Harman condend		200	200	000	007	007
Hours worked	Mean	.896	.898	.898	.897	.897
	St Dev	.215	.215	.214	.217	.216
	Min	.010	.006	.010	.004	.010
	Max	1.000	1.000	1.000	1.000	1.000
Age	Mean	42.073	42.000	41.926	41.936	42.211
Male	Mean	.500	.506	.501	.503	.498
Max observations		119 438	119 236	124 426	122 977	119 296

Note: The net replacement rate and the progressivity variable are based on wage predictions. Local unemployment is calculated as the unemployment-to-population ratio. Both openly unemployed and participants in labour market programmes are counted as unemployed.

Table 2. Estimated wage equations. Replacement rate and progressivity variable based on lagged wages. Dependent variable: first difference of log nominal wage. 2006-2009

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Inflation	•		•	.766***	.725***	.724***	.726***	.740***	.647***			.514***
				(.014)	(.018)	(.018)	(.018)	(.018)	(.020)			(.021)
Change in replacement rate	.343***		.332***	.367***	.369***	.368***	.369***	.365***	.490***	.395***	.395***	.547***
	(.006)		(.006)	(.006)	(.006)	(.006)	(.006)	(.006)	(800.)	(.007)	(.007)	(.004)
Change in Progressivity variable		.111***	.028***	.040***	.040***	.040***	.040***	.040***	.039***	.034***	.034***	.040***
		(.003)	(.003)	(.003)	(.003)	(.003)	(.003)	(.003)	(.003)	(.003)	(.003)	(.003)
Change in unemployment rate					057***	058***	054***	036**	319***	121***	121***	007
					(.017)	(.017)	(.017)	(.017)	(.019)	(.033)	(.033)	(.000)
Dummy for earlier unemployment					001***	001	001	001	.006***	001	001	.001
					(.001)	(.001)	(.001)	(.001)	(.001)	(.001)	(.000)	(.001)
Male				018	020	027	027	.009	498***	019	019	
				(.045)	(.045)	(.045)	(.045)	(.045)	(.049)	(.045)	(.045)	
Age				089***	089***	226***	217***	231***	363***	224***	236***	005***
				(.002)	(.002)	(.015)	(.016)	(.015)	(.017)	(.015)	(.016)	(.001)
Age squared						.157***	.148***	.163***	.282***	.153***	.165***	.000***
						(.017)	(.018)	(.016)	(.018)	(.017)	(.018)	(.000)
Payroll dummy 2007							.004				002	
							(.003)				(.002)	
Payroll dummy 2009							.000				003	
							(.002)				(.002)	
Controls				Yes								
Entrepreneurs excluded								Yes				
Full-time employed									Yes			
Year dummies										Yes	Yes	
Individual fixed effects												Yes
N	382 548	382 548	382 548	382545	382 545	382 545	382 545	374 786	291 656	382 545	382 545	382 545
R2	.031	.005	.031	.048	.048	.049	.049	.049	.078	.050	.050	.084

Notes: Where indicated, the controls comprise educational level and type, region of birth and civil status. The constant is not reported. Robust standard errors are reported within parenthesis.

***: significant at the 1 per cent level; **: significant at the 5 per cent level; *: significant at the 10 per cent level. The coefficients and standard errors for Male and Age have been multiplied by 100, and the coefficient and standard errors for Age squared by 100².

Table 3. Estimated wage equations. Replacement rate and progressivity variable based on estimated Mincer wages. Dependent variable: first difference of log nominal wage. 2006-2009

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Inflation				.660***	.688***	.685***	.687***	.707***	.595***			
				(.015)	(.019)	(.019)	(.019)	(.019)	(.021)			
Change in replacement rate	.083***		.086***	.220***	.210***	.203***	.203***	.201***	.161***	.324***	.328***	.641***
	(800.)		(800.)	(.009)	(.010)	(.010)	(.010)	(.010)	(.011)	(.022)	(.022)	(.024)
Change in progressivity variable		015***	017***	.010***	.009***	.008***	.008***	.008***	.008***	.004	.004	.006*
		(.003)	(.003)	(.003)	(.003)	(.003)	(.003)	(.003)	(.003)	(.003)	(.003)	(.003)
Change in unemployment rate					.051***	.055***	.052***	.077***	076***	124***	124***	040
					(.018)	(.018)	(.018)	(.018)	(.020)	(.034)	(.034)	(.039)
Dummy for earlier unemployment					.004***	.004***	.004***	.004***	.008***	.004***	.004***	.007***
					(.001)	(.001)	(.001)	(.001)	(.001)	(.001)	(.001)	(.001)
Male				054	039	045	044	014	237***	047	047	
				(.046)	(.046)	(.046)	(.046)	(.046)	(.050)	(.046)	(.046)	
Age				090***	088***	263***	259***	266***	388***	253***	259***	994***
				(.002)	(.002)	(.014)	(.016)	(.014)	(.017)	(.015)	(.016)	(.092)
Age squared						.204***	.199***	.208***	.325***	.189***	.195***	.897***
						(.016)	(.017)	(.016)	(.018)	(.016)	(.017)	(.091)
Payroll dummy 2007							000				003	
							(.003)				(.003)	
Payroll dummy 2009							.002				.001	
							(.002)				(.002)	
Controls				Yes								
Entrepreneurs excluded								Yes				
Full-time employed									Yes			
Year dummies										Yes	Yes	
Individual fixed effects												Yes
N	427 959	427 959	427 959	427 956	427 956	427 956	427 956	418 773	320 026	427 956	427 956	427 956
R2	.000	.000	.000	.014	.014	.014	.014	.015	.020	.015	.015	.010

Notes: Where indicated, the controls comprise educational level and type, region of birth and civil status. The constant is not reported. Robust standard errors are reported within parenthesis. ***: significant at the 1 per cent level; **: significant at the 5 per cent level; *: significant at the 10 per cent level. The coefficients and standard errors for Male and Age have been multiplied by 100, and the coefficient and standard errors for Age squared by 100².

Table 4 Estimated wage equations. IV estimations (2SLS). Replacement rate and progressivity variable instrumented by reform variables based on estimated Mincer wages. Dependent variable: first difference of log nominal wage. 2006-2009

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Inflation	•	•	•	.843***	.745***	.736***	.743***	.761***	.675***
				(.048)	(.031)	(.031)	(.032)	(.031)	(.042)
Change in replacement rate	.107***		.201***	.215***	.246***	.241***	.241***	.239***	.181***
	(.010)		(.020)	(.024)	(.019)	(.019)	(.019)	(.019)	(.019)
Change in progressivity variable		330***	401***	.442***	.540***	.485***	.504***	.494***	.429***
		(.064)	(.074)	(.126)	(.155)	(.155)	(.161)	(.160)	(.155)
Change in unemployment rate					214***	189***	204***	165***	301***
					(.059)	(.059)	(.064)	(.060)	(.064)
Dummy for earlier unemployment					.003***	.003***	.003***	.003***	.007***
					(.001)	(.001)	(.001)	(.001)	(.001)
Male				.044	.073	.061	.064	.095*	160***
				(.051)	(.053)	(.052)	(.053)	(.052)	(.059)
Age				096***	096***	247***	235***	249***	385***
				(.002)	(.002)	(.015)	(.017)	(.015)	(.017)
Age squared						.176***	.164***	.180***	.311***
						(.018)	(.020)	(.018)	(.021)
Payroll dummy 2007							001		
							(.002)		
Payroll dummy 2009							.004**		
							(.002)		
Controls				Yes	Yes	Yes	Yes	Yes	Yes
Entrepreneurs excluded								Yes	
Full-time employed									Yes
N	426 819	426 819	426 819	426 816	426 816	426 816	426 816	417 633	319 510

Notes: Where indicated, the controls comprise educational level and type, region of birth and civil status. The constant is not reported. Robust standard errors are reported within parenthesis. ***: significant at the 1 per cent level; **: significant at the 5 per cent level; *: significant at the 10 per cent level. The coefficients and standard errors for Male and Age have been multiplied by 100, and the coefficient and standard errors for Age squared by 100².

Table 5. Estimated wage equations. Percentile income group level. Dependent variable: first difference of log mean nominal wage. 2006-2009

	(1)	(2)	(3)	(4)	(5)	(6)
Change in mean replacement rate	.200***	.200***	.199***	.199***	086	078
	(.046)	(.046)	(.046)	(.046)	(.182)	(.182)
Change in mean of progressivity variable		.001		.000		.019
		(.017)		(.017)		(.016)
Group fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Weights			Yes	Yes	Yes	Yes
Year dummies					Yes	Yes
N	400	400	400	400	400	400
R2	.060	.060	.060	.060	.255	.258

Notes: Mean wages and reform variables computed over percentile income intervals, based on the 2006 income distribution implied by predicted Mincer wages. The constant is not reported. Robust standard errors are reported within parenthesis. ***: significant at the 1 per cent level; **: significant at the 5 per cent level; *: significant at the 10 per cent level. Weights indicate average group size.

$$dlnw^{i} / d\rho^{i} = \beta_{2} = [0.2, 0.4]$$

$$\rho^i = b/\omega_E^i$$

$$\omega_E^i = w^i - T_E(w^i) = (1 - t)w^i$$

$$dlnw^{i}/dlnb = \beta_2 \rho^{i}/(1 + \beta_2 \rho^{i})$$

$$dlnw^{i} / dln(1 - t) = -\beta_{2} \rho^{i} / (1 + \beta_{2} \rho^{i})$$

$$dln\omega_E^i / dln(1-t) = 1 - \left[\beta_2 \rho^i / (1 + \beta_2 \rho^i)\right]$$

$$\rho^{i} = 0.65 \Rightarrow \beta_{2} \rho^{i} / (1 + \beta_{2} \rho^{i}) = [0.12, 0.21]$$